1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

I can tell the time to 5 minutes

Shape		
I can name some common 2D and 3D shapes from a group of shapes or from pictures of the		
shapes and describe some of their properties (e.g. triangles, rectangles, squares, circles, cuboids,		
cubes, pyramids and spheres).		
I can name and describe properties of 2D and 3D shapes, including number of sides, vertices,		
edges, faces and lines of symmetry.		
I can describe similarities and differences of 2D and 3D shape, using their properties (e.g. that		
two different 2D shapes both have only one line of symmetry; that a cube and a cuboid have the		
same number of edges, faces and vertices, but different dimensions).		
Fractions		
I can identify ¼, 1/3, ½, 2/4, ¾, of a number or shape, and know that all parts must be equal parts		
of the whole.		
Time		
I can read the time on a clock to the nearest 15 minutes.		
I can read the time on a clock to the nearest 5 minutes.		

Count in 5's round the clock and label.

What does each number on the clock represent?

Is there another way to say 15 past and 30 past?

Where should the minute hand be to show 5 minutes past?

Where should the hour hand be to show 5 past the hour.

Make your own 5 past times.

Where should the minute hand be to show 10 minutes past?

Where should the hour hand be to show 10 past the hour.

Make your own 10 past times.

Where should the minute hand be to show 20 minutes past?

Where should the hour hand be to show 20 past the hour.

Make your own 20 past times.

Where should the minute hand be to show 25 minutes past?

Where should the hour hand be to show 25 past the hour.

Make your own 25 past times.

Draw hands to show -

10 past 3

10 past 4

Draw hands to show -

10 past 3

10 past 4

Draw hands to show -

20 past 3

20 past 4

Match the clocks to the times

_			_	_
5	n	ac	•	7
•	ν	us		

10 past 7

20 past 7

reasoning

Do you agree with Molly? Explain why..